LASER WELDING FOR MEDICAL DEVICE MANUFACTURING

June 19, 2024

Dr. Geoff Shannon, Director of Marketing, Precision Manufacturing

Dr. Roland Mayerhofer, Product Marketing Manager

Dr. Tissa Gunaratne, Product Line Manager

AGENDA

Laser Welding Fundamentals

- Introduction to Laser Welding What to Know
 - Laser basics
 - Laser Parameters
 - Materials
 - Cover Gas
 - Joint Geometry, Fit-up & Tooling
- Welding solutions
- Weld Monitoring

LASER METAL WELDING FUNDAMENTALS

LASER WELDING APPLICATIONS

- Many medical device laser welding applications
- Laser welding aligns well with MDM
 - Non-contact
 - Low thermal input
 - Small spot size
 - Flexible
 - Reliable

LASER MICRO-WELDING GEOMETRY WINDOW

THE BASICS

- Soldering Iron
- MicroTIG
- Focused laser

100 W/cm2

10,000 W/cm2

1,500,000+ W/cm2

Weld

Welding modes

Power density

LASER WELD PARAMETER REGION

LASER WELD PARAMETERS

LASERS FOR MICRO WELDING

Pulsed Nd:YAG

Fiber laser

- "The original" laser for micro welding
- Pulsed operation only
- Large parameter envelope
- Spot diameter ~ 200 to 400 microns
- Can be field repaired
- Higher cost of ownership
 - Flash lamps
 - Cavity optics & alignment
 - Water cooling

- Latest laser technology
- Pulsed or continuous wave operation
- OK parameter envelope
- Spot diameter ~ 50 300 microns
- Cannot be field repaired
- Lower cost of ownership
 - Air cooling
 - No consumables

SINGLE MODE VS MULTI MODE (BEAM QUALITY, M²)

- Based on laser/delivery fiber diameter
 - Single mode fiber laser ~ 15μm, M² ~ 1.2 best for cutting
 - Multi-mode delivery fiber $\geq 50\mu$ m, M² > 5 best for welding (mostly)

LASER FOCUSING SOLUTIONS

Fixed head	Scan head	Smart wobble head
		C. C
Stages provide motion	Motion included	Stages provide motion
Applications: Used for all applications	Applications: High speed linear seam welds, multi position spot welds	Applications: Specialized welding – dissimilar metals
Pulsed Nd:YAG & Fiber laser	Fiber Laser	Fiber Laser

PARAMETERS - SELECTING FOCUS SPOT SIZE

- 0.01 0.02" spot size ok for many pulsed applications
- ~0.004" continuous wave seam applications
- Poor fit-up requires larger spot size
- Smaller, thinner parts need smaller spot sizes
- Maximize focal length for tooling access and spatter protection

PULSE PARAMETERS – PEAK POWER & PULSE WIDTH

PEAK POWER

- Increases depth
- Too high causes porosity

PULSE WIDTH

- Increases width and depth
- Controls the thermal cycling of delivering power to the workpiece

TYPICAL PULSED WELDING PARAMETERS

Peak Power (kW): 0.2 - 1.25kW Pulse width (milliseconds): 1 - 5ms

0.5 - 5 Joule

In house weld sectioning equipment is a must!

PULSED SEAM WELDING

50% overlap

- Overlap % = 1- (speed/spot size x frequency)
- Rule of thumb settings
 - 50-60% spot overlap for strength
 - 80-90% spot overlap for hermeticity

TUNING THE WELD WITH PULSE SHAPING

- Many welds are ok with square pulse
- Only use when you have an issue, and keep it simple
- For seam welding CW laser mitigates weld cracking

CONTINUOUS WAVE SEAM WELDING

- Match power, speed to penetration
- Circumferential seam welds

COVER/SHIELD GAS

- Argon used
- Prevents oxidation
- Produces aesthetic shiny weld
- Required for titanium
- Laminar flow (5-10 l/min.)
 - Avoid using too much flow
- Fix position rigidly

No Gas

Gas

MATERIAL SELECTION

Materials	Weldability	Comment
304/304L		Best stainless steel to weld
316/316L		ok provided Cr/Ni ratio > 1.7
303		Weld only with CW laser
Зхх		Require testing
4xx		Cracking tendency, CW laser may help, testing required
Nitinol		Brittle welds, cracking
Copper		Needs high peak power, weld repeatibility can be an issue
Nickel		Good welds
Platinum		Need high peak power

Mix Grades for Weldability
440 to 304, CW laser weld

JOINT GEOMETRY, FIT-UP & TOOLING

- You can't weld air!
- Tooling is a critical part of the welding process
- Considerations;
 - Clamp as close to the weld joint as possible
 - Clearance for the laser
 - Access for gas shielding
 - Datum points for vision + access for illumination
- Iterative process for complex designs
 - Rapid prototype concepts
 - Plan for several design cycles

DESIGN FOR LASER WELDING SUCCESS

The parts

- materials & plating
- joint geometry
- edge preparation

Know the toolbox

- Lasers
- Focus/motion
- Lean on vendors ⁽²⁾

Understand

- How to test?
- Process window
- Avoid over specifying

WELDING SYSTEM SOLUTIONS

LASER WELDING SYSTEMS – SCALABLE SOLUTIONS

COHERENT SYSTEM ROADMAP

Smarter systems, easy to use software, modular hardware options

Operator has no influence on process yield

PROCESS MONITORING Dr Roland Mayerhofer

WELD PROCESS MONITORING

Issues will happen!

- Optics damage dirty cover slide or lens
- Material issues, fit-up / composition
- Operator error position of focus, alignment

Goal:

- Avoid making scrap!
- Data available for a comprehensive documentation, analysis and optimization of the laser process (and to show to your customers)
- Minimize downtime
- Reduce or eliminate inspection

CONTROL THE LASER PROCESS AT VARIOUS STAGES

Part geometry

Fixture sensing

PRE-PROCESS CONTROL

System Check	Comment	Coherent Solution
Laser energy	Measurement with NIST traceable device.	\checkmark
Focus diameter	Measure diameter	\checkmark
Position of Focus	Measure position of focus	✓
Pre production part check	Laser Framework sample part option	✓

Job Preparation	Comment	Coherent Solution
Recipe	Ensure correct recipe selection, barcode/carrier	✓
Tooling	Identify correct tooling, barcode	\checkmark
Part detection	Parts are present	\checkmark
Part fit-up	Verify part fit-up	✓

LaserFramework Integrated devices

CONTROL THE LASER PROCESS: IN-PROCESS CONTROL

Seam tracking

IN-PROCESS MONITORING

Monitoring	Comment	Coherent Solution
Laser energy	In line measurement for every pulse Power sensor Laser	
Sensor signals are collected and interpreted for weld quality - SmartSense	Plasma Back Reflection Temperature	

SMARTSENSE APPLICATION EXAMPLE: LAP WELDING STAINLESS STEEL SHEETS

- Upper and lower sheet solid, middle layer with cutout (100 µm)
- CW seam weld 200W power

CHALLENGE: SPOT WELDING WITH NARROW LASER POWER PROCESSING WINDOW

- Spot welding of razor blades, galvo processing setup
 - Plasma signal strongly dependent on deflection angle!
 - > Process Monitoring evaluation based on all 12 weld spots

80W

CHALLENGE: SPOT WELDING WITH NARROW LASER POWER PROCESSING WINDOW

- Spot welding of razor blades, galvo processing setup
 - > Process Monitoring evaluation based on all 12 weld spots

SmartSense+ labels an increase in laser power of 10W as NOK (leading to too much weld penetration within lower sheet)

NOK

90W

ISSUES: OUT OF FOCUS / INSUFFICIENT CLAMPING / BLADE MISSING

- Spot welding of razor blades, galvo processing setup
 - > Process Monitoring evaluation based on all 12 weld spots

De-focussing -1.0 mm

Poor clamping

No blade

CUSTOMER APPLICATION: WELDING OF RAZOR BLADES

SMARTSENSE+ DETECTION GOALS FOR WELDING

- Gap between joint line
- Laser power
- Out of focus
- No shielding gas
- Surface contamination
- Dirty cover glass of the processing optics
- Wrong welding materials

Q&A

