LASER MARKING & ENGRAVING

From application to solution

Coherent Laser Seminar San Jose, Costa Rica, June 19, 2024

Dr. Roland Mayerhofer, Product Marketing Manager Dr. Tissa Gunaratne, Product Line Manager

Copyright 2024, Coherent. All rights reserved.

- Introduction: from application to solution
- How to select the right laser:
 - Fundamentals: most important parameters for marking and engraving
 - Optical configurations
 - Available laser sources
- Laser marking processes and applications
- Laser micro processes and applications
- How to control the complete process chain?
- System and automation options for complete solutions

FROM APPLICATION TO SOLUTION

STEP 1 : **APPLICATION LAB**

- Various laser systems or sub-systems for process development
- Comprehensive measurement equipment for process qualification

Wavelengths:

UV (355nm), VIS (517, 532nm), NIR (1030-1070nm), IR (9.35-10.6µm)

Pulse durations:

350fs - cw

Power levels:

Up to 1.5kW (IR)

HOW TO SELECT THE RIGHT LASER FOR A SPECIFIC APPLICATION?

NO. 1-6 IMPORTANT LASER PARAMETERS

- Order of importance
 - Light absorption and heat input optimization:

• Beam quality and optical configuration determine achievable spot size

• Parameter, that help to scale throughput

NO. 1 MOST IMPORTANT LASER PARAMETER: LASER WAVELENGTH

Laser wavelength determines initial absorption in the material

NO. 2 MOST IMPORTANT LASER PARAMETER: PULSE WIDTH

 Pulse width determines ablation rate and quality in surface engraving of metals

Critical pulse duration: determined by lattice heating time

Material	critical pulse duration [ps]
Iron	1.1 – 1.8
Copper	26
Aluminium	7
Titanium	2.6
Nickel	0.3
Platinum	5
Gold	14

Critical pulse width

PARAMETER BEAM SHAPE: SMART PROTECT TECHNOLOGY

I.e. for semiconductor devices with:

- Very thin mold compound encapsulation
- IC substrates with thin laminated solder stop layers
- Dark marking of heat spreaders
- More effective and selective thin film removal
- For IR, green and UV laser markers

PROCESSING 3-DIMENSIONAL PARTS

Fast Focusing module (FFM)

- Dynamic focus shifter
- Recipe controlled focus setting
- Enables 3D free form marking
- Travel range depends on F-Theta objective

TYPICAL LASER TYPES FOR MARKING AND ENGRAVING

Powerline E

- End-pumped, solid state Nd:Vanadate lasers
- Short ns-pulses at high peak power

PowerLine E Air 25-1064						
Wavelength	1,064 nm					
Average power	18 W (20 kHz)					
Frequency	cw, 0 – 200 kHz					
Pulse width	20 ns (20 kHz)					
Beam quality M ²	1.3					

- Powerline F
 - Q-switched fiber laser
 - Fixed or variable pulse width at decent peak power

PowerLine F 20-1064 Varia						
Wavelength	1,060 - 1,070 nm					
Average power	19					
Frequency	2 – 1,000 kHz					
Pulse width	1.5 – 350 ns					
Beam quality M ²	2.0					

Powerline USP

- Ps- or fs-lasers hybrid MOPA lasers
- Pulse width ranging from 350 fs to 10 ps, burst mode

PowerLine PS30	
Wavelength	1064 nm
Average power	28 W
Frequency	50 – 5000 kHz
Pulse width	<10 ps
Beam quality M ²	< 1.3

LASER MARKING PROCESSES

EXACTMARK 230 WITH PS30 LASER - BLACK MARKING

- High-contrast mark, not sensitive to angle of view
- Indestructible and non-corrosive marking of a broad range of metals
- No fading after multiple autoclaving cycles
- Contamination-free sub-surface mark
- Minimal thermal stress extends applicability on fragile and/or small parts
- No need for post processing, e.g., passivation

CORROSION RESISTANT MARKING - BLACK MARKING

- Short laser pulse durations limit heat affection
- Diffusion of alloy elements is reduced
- Surface oxidation of Cr and Fe significantly reduced
- Formation of nano-structures due to USP laser pulses
- Changes in metal alloy structure minimized

Nanosecond mark

Nanosecond laser marking after corrosion test (72h in 50°C warm 5% NaCl saltwater spray test)

Picosecond mark

Black-marking LIPSS (laser induced periodic surface structure) under SEM

CORROSION RESISTANT MARKING - USP BLACK MARKING

72h in 50°C warm 5% NaCl salt-water spray test

Passivation

7% Citrisurf 2250, 20 min @ 50°C

Autoclaving

Steam, >120 °C, 60 min

MARKING OF GLASS AND POLYMERS W/ UV NS-LASERS

- Permanent, direct part marks are mandatory for tracking and traceability.
- Increases patient safety, enhances quality control, improves counterfeit safety

MULTI-SIDE MARKING

MARKING BY ENGRAVING

Post processing mandatory due to the high amount of debris. Discoloration visible due to the heat impact.

Picosecond

Only slight cleaning required, rougher surface structures within the marking.

Femtosecond

No post processing or cleaning required, least amount of discoloration.

MARKING BY ENGRAVING – SMALLEST FEATURES

Security features, DMC and traceability marks on various materials (anti-counterfeiting)

Very small codes with cell sizes down to ~5µm can be marked on various materials like metal or glass.

Codes can be marked on glass to be close to invisiblility with bare eye but still readable.

APPLICATION MATRIX – LASER MARKING

	λ = 1,064 nm						$\lambda = 532 \text{ nm}$ $\lambda = 355 \text{ nm}$								
	PL E Air 10	PL E Air 25	PL F 20	PL F 30	PL F 50	PL F 100	PL F 20 Varia	PL F 50 Varia	PL PS 30	PL E 6 QS	PL E 12 QS	PL E 25 SHG	PL E 20 THG	PL E 30 QT	
Plastic Marking (Carbonization)		•	•	•	•		•	•	•				•		
Plastic Marking (Foaming)	٠	٠	•	٠	•		•	•	•						
Plastic Marking (Bleaching)													•	•	
PEEK, PA 6, Nylon											٠	•	•	٠	
Day and Night Design		•					•								
Metal Marking & Engraving			•	٠	•	•	٠	•	•						
Copper Marking												•			
Annealing Marking							•	•							
USP Black Marking									•						
Glass Marking									•		•		•	•	

C

LASER MICRO PROCESSING APPLICATIONS

SURFACE CLEANING AND STRUCTURING

- Laser ablation of coatings
 - Paint or organic contaminations
 - Residual material from molding processes
- Laser pre-treatment for adhesion improvement
 - Removal of contaminants (grease, oil, ...)
 - Nano-structuring of metals for improved joining properties with organic materials

SURFACE STRUCTURING JOINT IMPLANTS

- Replace Media Blast for Improved Thermal Spray Coat Adhesion
 - No masking
 - Reduce handling damage
 - Consistent control
 - Minimal strength impact
 - Improved coating adhesion
- Functionalize Surface
 - Promote bone growth
 - Anti-bacterial
 - Modified surface chemistry

USP processed samples promote bone growth

MULTI-PASS CUTTING OF POLYMER COATINGS ON MEDICAL IMPLANTS AND DEVICES

- Some medical implants or devices have got a polymer coating or shrink tubing applied to the metal structure
- This coating/shrink tube needs to be cut precisely at specific locations in relation to the strut layout

- Two different Coherent solutions available for such an application, using 30W CO₂ laser (10.6 µm) or fs-Laser SHG (517 nm)
- Vision and pattern recognition sytem required

APPLICATION MATRIX – LASER MICRO PROCESSING

IERENT	

λ	<i>.</i> = 10,6 μm λ =				= 1,064 nm				$\lambda = 532 \text{ nm}$				$\lambda = 355 \text{ nm}$					
	PL C30	PL E Air 10	PL E Air 25	PL F 20	PL F 30	PL F 50	PL F 100	PL F 20 Var	PL F 50 Var	PL PS 30	Monaco fs- subsist.	PL E 6 QS	PL E 12 QS	PL E 25 SHG	Monaco fs-	<mark>subsist.</mark> PL E 20 тыс	PL E 30 QT	
Deep engraving						•	•	•	•	•	•				•			
Polyimide cutting/drilling															•	•	•	
Polymer cutting/drilling	•									•	•				•			
Coating ablation								•	•	•	•	•	•		•	•	•	
Metal surface structuring										•	•				•			
Polymer structuring										•	•		•		•	•	•	
Tools surface cleaning				•	•	•	•	•	•	•	•							
Thin film ablation										•	•		•		•		•	
Ceramic structuring	•									•	•				•		•	
Glass polishing	•																	
								Dever	auidali	no only	opplie	tion too	t moon	amanda	d		05	

APPLICATION CONFIGURATION DONE

-> NEXT STEP IS TO LOOK AT THE COMPLETE PROCESS CHAIN

CONTROL THE LASER PROCESS AT VARIOUS STAGES

-> Needs a system software to let the process developer or operator set this sequence up in an intuitive way

LASER FRAMEWORK SOFTWARE: SETTING UP AN APPLICATION

- The Recipe is the center point of the new LFW concept and allows the process developer to create a sequence of process steps, that are necessary to fulfill a specific laser application.
- The Process step allows setting parameters for the individual steps of a recipe, for example:
 - laser parameter
 - Galvo scanner layout or CNC program
 - variables
 - vision tasks
 - machine I/Os
 - data exchange options
 - etc.

C HERENT

LASER FRAMEWORK SOFTWARE: GENERATE A RECIPE

\equiv		pilot off shutter closed equip. state maintenance	READY
Default {1}			Galvo
	Vision		Vision
			Data
+			Live
			Machine
Recipe	<	▶ 1/1	Execute
Creation Date			
03.01.2023	maintenance		Edit.
			Delete
	×		
C@HERENT 5.3.27.3	Add or edit a recipe.		03.01.2023 13:29

LASER FRAMEWORK SOFTWARE: EXECUTING AN APPLICATION

 The Job – contains all necessary information for the execution of a certain laser processing application. A job includes a recipe and additional data, like number of executions or input variables. Each job has got a unique number assigned, that can also be selected or called by external I/Os.

CONTROL THE LASER PROCESS: PRE-PROCESS CONTROL

PARTVISION – PACKAGES

Vision and pattern recognition packages for all PowerLine Marking Sub-systems and Systems

BASIC

ADVANCED

ADVANCED +

Consisting of hardware and software features:

- Vision Cube
- Camera
- LED Illumination and controller (Advanced)
- Illumination adapted scanner mirrors
- Pre-assigned Laser FrameWork vision tasks (license-controlled)

LASER FRAMEWORK SOFTWARE: DEFINE A VISION TASK

\equiv \checkmark	pilot off sh	utter closed equip. state maintenance	READY
Sharpness: 23		$\square \textcircled{0}$	Live
		\Box	ROI
100000000000000000000000000000000000000			Teach
			Test
	And the second		Next
Light setup 🗸 🖌		1/3	
Exposure time 10 ms			
C©HERENT 5.3.27.3	Adjust exposure time and light intensity.		03.01.2023 13:41

PRE-PROCESS CONTROL OPTIONS

- **3D part geometry shape detection** w/ line scan camera and x/z-axes
 - Precise distance measurement
 - Captures point cloud of object surface
 - Accurate detection of workpiece geometry and position
 - Automatic position adjustment of marking layout

PRE-PROCESS CONTROL OPTIONS

Autofocus from image sharpness value

- For TTL camera calibration
- For process developer
- For automatic vision task

*requires LFW controlled z axis ** FoV = Field of View

Out of focus: blurry, live FoV**

In Focus: sharp, crisp live FoV**

PRE-PROCESS CONTROL OPTIONS

Autofocus from image sharpness value

- For TTL calibration
- For process developer
- For automatic vision task

CONTROL THE LASER PROCESS: POST-PROCESS CONTROL

C HERENT

POST-PROCESS CONTROL OPTIONS

• Vision: code verification

 Log code reading results according to ISO standards or print a report

• Vision: OCR

Check lasered clear text marking content

C HERENT

CONTROL THE LASER PROCESS WITH LASER FRAMEWORK

MARKING PROCESS – VIDEO

UDI LASER MARKING MADE EASY WITH LASER FRAMEWORK SOFTWARE

Preparation and Execution

Copyright 2023, Coherent. All rights reserved.

SYSTEM AND AUTOMATION OPTIONS 2

STANDARD SYSTEMS FOR MARKING AND ENGRAVING

EasyMark,ExactMark 210ExactMark 230 USPCombiLine XLCombiLine RT800LabelMarkerEasyMark XLExactMark 210 TL/RExactMark 230 WTCombiLine RT1000CombiLine RT1000

AP 530 (dedicated 3d micro processing system with internal robot)

AUTOMATED SYSTEMS - BASED ON UW180 PLATFORM

AUTOMATION AND PROCESS CONTROL: MARKING

AUTOMATION AND PROCESS CONTROL: MARKING

AUTOMATION AND PROCESS CONTROL: MARKING AND TEXTURING

AUTOMATION AND PROCESS CONTROL: MARKING

Automatic Tube Processing System

Copyright 2024, Coherent. All rights reserved.

COHERENT